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1. We shall consider a body made of a material subject to creep; let it
occupy the volume V, bounded by the surface S. On part S, of S let there
be given the stresses

0, COSRE + T, COSAY + T, CO8nz=f, (xy2) (1.1)
on part S, the components of the velocity vector
v, = v,°, v, = vy‘, v,=7," (1.2)

Inside the body one has the equilibrium equations

99, IT,, 0T

%- + "‘5:"— + _‘—a:z + Fx =0 (xy2) (1'3)

Here and in what follows the symbol (xyz) denotes that the unwritten
formulas or expressions of components are to be determined by cyclic
permutation of the letters x, y, z.

The surface loading and body forces may, generally speaking, depend on
time t. We will assume that the components of the strain-rates

av v oY
£x=-é—:—,,”,nxy='35+a—:,... (xyz) (1-4)
are determined by the equations of the theory of creep of Kachanov (1]
1 [95, 89, o\’ . 1 07,
Ex=75‘_[?_v(a—ty+ﬁz'):|+5x" 'nxy:“?—aitcg'*"‘xyc =2y (1.5)

where the components of creep £,°, 3 xy"', ... are known functions of the
stresses and time t:

ES=F (T, t) (s, — o), 'nx”c =2F (T, YL (1.6)
(T is the intensity of the shear stresses).
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The initial elastic state of stress of the body (for t = 0) is
assumed to be known:

S =0 (T Y, By oy Ty =T, (7 Y 2) (xyz) u.n

2. The considered interval of time will be subdivided by the points
t=0,t=1t, ..., t=1t, ... into small segments At (which, generally
speakmg, may not be equal to each other).

Differentiating with respect to time the static boundary conditions
(1.1) and the equilibrium equations (1.3), we obtain

do at av of
—‘r,-‘fcosnx-{—“ﬁgcosny-{—-fcosnz:-a—: (2.1)

80, \ 3 (arxy ! 4 asz) 6F
az( i)+ ’a’t’)*‘ﬁz‘( o)t =0 e (2:2)

In the equations (1.4), (1.5), (2.1) and (2.2) we set ¢t = t, and re-
place the time derivatives by finite differences
Ao,
t==t; = AL (xyz)

a0,
at

We then obtain the following system of equations for the stress and
strain increments:

s, 9Ar Tay dAr,,
Fr -+ oy -+ 72 -+ AF:c =0 (xyz) (2.3)

1 1
Ae = 7 [Ao, —v (Acy + As,)] 43, A'rxy =7 A‘tx” + axy @r  (2.4)

Here oF

AF, = (—5{:’5)£=i‘- A, As, = (E,) t=l’.‘A" By = (&) f=f; At
3, = ('nxyc) t=f;At etc., {2.5)

The boundary conditions (2.1), (1.2) give

Ao, cosnz + At, cosny + A1, cosnz = Af, or S1 (xy2) (2.6)
Au,= Au,* or 8 2.7
where  Au, =7z, |, AL Au,® =12," |,y At  etc. are the increments of

the dlsplacement couponents in the body and on the surface in time At.
Obviously
ddu, dAu, dAu,

Atx = 8x ' A’rxy ay + (xuz) (28)

Thus, the determination of the increments of stresses and deformations
in the time At are reduced to a peculiar linear problem which in many
respects is malogous to a problem of thermoelasticity. The difference
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from the last consists only of the fact that the given additional de-
formations 8., ..., 8,, calculated in accordance with (1.6), (2.5) from

xy
B, = [F (T, 1) (o, — )] At, B, =2[F (T, 1) 1,,] At
for t= t‘-, G = Oy oo e (xyz) (29)

are present in (2.4) in the expressions for the extensions as well as
for the shears, and, generally speaking, 8, # 8 # 8. Using (2.9) we
note that the supplementary deformations satisé the condition of in-
compressibility

b, 4+, +3,=0 (2.10)

It is not difficult to demonstrate (for example, by constructing with
the aid of (2.3), (2.4), (2.6), (2.8) and (2.10) the equilibrium equa-
tions in terms of displacements) that the determination of the displace-
ments Au_,Au_ and Au, in the problem under consideration reduces to a
traditional isothermal problem of the theory of elasticity with the
additional loadings

E 1
Me=Trv [8. cosnz + 5 (3, cos ny + B, cos nz)] (2 (2.11)

on the surface S, and

% a% an
3F =_,__.._E___[ x+_;_.( "W_’_ b )} (xyz) (2.12)

x T+ v o dy oz
throughout the body.

The analysis of unsteady creep of a body thus reduces to the evalua-
tion of increments in the stresses and deformations for consecutive small
time intervals At. The additional loads at each stage must be calculat-
ed from the formulas (2.9), (2.11) and (2.12) using the results of the
evaluation of the preceding integral. The initial values for this pro-
cess are given by the solution (1.7).

In the case of a uniform state of stress (for example, in the problem
of stress relaxation of a rod) the stated numerical process reduces to

the numerical integration of the original equations by the method of
Euler [2].

We note that the description of the numerical proeedure does not de-
pend essentially on the actual form of the formulas (1.6) and therefore
one may apply it also to other theories of creep, for example, the theory
of hardening,

3. The solution of the *pseudo-thermal® problem of the theory of
elasticity to which the integration of the equations of creep were re-
duced may be constructed for example on the basis of (2,11) and (2.12)
if the Green function of the corresponding elastic problem is known. In
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a number of cases it is not difficult to obtain the required general so-
lution based directly on the original equations.

We shall consider, as an example, the unsteady creep of a twisted
circular rod of radius a.

By (2.4) one has
1
Atyy =g Atyy +5(1) (3:4)

where 8(r) = 8 ;, _ must be assumed to be an arbitrary function of the
radius r. Setting, as usually, Ay , =rA6@ and taking into consideration
that the external torque is constant, we find from the condition of
static equilibrium

AT, =G [% § S(ryrédr —3% (r)] (3.2)
0

4. We note that the studied numerical process may be generalized to
the case of presence of plastic deformations. We will start from the
equations of the theory of plastic flow

de,P = (T)(s, —0)dT,  dy, P =20(T)7dT (ayz) for T =T, dT >0 (4.1)

and

deP=deP=.. .=dy,P=0 forT T, 1or T=T, butdl 0. (4.2)

m

Here I, is the maximum value of the intensity T, attained during the
entire loading history.

Supplementing (2.4) by finite increments of plastic deformation, cal-
culated from (4.1), we obtain for the loading stage

Ac, = ¢y Ao, + ey . . .+ AT B, (xyz) (4.3)

where the coefficients c;, determine the state of stress at the beginning
of the time interval At under consideration.

The instantaneous position of the boundary of the region of unloading
is determined by the condition At = 0. In the region of unloading Equa-
tion (2.4) will apply. The relation (4.3) represents the law of deform-
ation of a certain anisotropic body.
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